Homotopy Groups of Spheres

Zhouli Xu

University of California, Los Angeles

November 27, 2024

Smooth Structures on Spheres

- Smooth Structures on Spheres
- Stable Homotopy Groups of Spheres

- Smooth Structures on Spheres
- Stable Homotopy Groups of Spheres

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Motivic Homotopy Theory

- Smooth Structures on Spheres
- Stable Homotopy Groups of Spheres

- Motivic Homotopy Theory
- Future Directions

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer: Yes. Perelman 2003.

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopy equiv to S^n . Is *M* homeomorphic to S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopy equiv to S^n . Is *M* homeomorphic to S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Answer: Yes.

Question (Poincaré, 1904)

```
M: closed manifold, dim = 3, \pi_0 M = \pi_1 M = 0.
Is M homeomorphic to S^3?
```

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopy equiv to S^n . Is *M* homeomorphic to S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Answer: Yes.

```
▶ n = 4, Freedman 1982.
```

Question (Poincaré, 1904)

```
M: closed manifold, dim = 3, \pi_0 M = \pi_1 M = 0.
Is M homeomorphic to S^3?
```

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopy equiv to S^n . Is *M* homeomorphic to S^n ?

Answer: Yes.

- ▶ *n* = 4, Freedman 1982.
- ▶ $n \ge 5$, Smale (smooth), Newman, Connell. 1960's.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Question

M: closed, smooth, dim = n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer:

▶ *n* = 3. Yes. Moise 1952.

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- ▶ *n* = 4. Open.

Question

M: closed, smooth, dim= *n*. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- ▶ *n* = 4. Open.
- n = 5, 6. Yes. Kervaire–Milnor.

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- ▶ *n* = 4. Open.
- n = 5, 6. Yes. Kervaire–Milnor.
- n = 7. No. Milnor's exotic 7-sphere.

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- ▶ *n* = 4. Open.
- n = 5, 6. Yes. Kervaire–Milnor.
- n = 7. No. Milnor's exotic 7-sphere.

Questions

1. For which n, is there a unique smooth structure on S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Question

M: closed, smooth, dim = n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- ▶ *n* = 4. Open.
- n = 5, 6. Yes. Kervaire–Milnor.
- n = 7. No. Milnor's exotic 7-sphere.

Questions

1. For which n, is there a unique smooth structure on S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

2. How many smooth structures are there on S^n ?

Kervaire–Milnor $n \ge 5$

- Θ_n = smooth structures on S^n
 - = h-cobordism classes of homotopy n-spheres

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

Kervaire–Milnor $n \ge 5$

- $\Theta_n =$ smooth structures on S^n
 - = h-cobordism classes of homotopy n-spheres
- Θ_n^{bp} = homotopy spheres that bound parallelizable manifolds

Kervaire–Milnor $n \ge 5$

• Θ_n = smooth structures on S^n

- = h-cobordism classes of homotopy n-spheres
- Θ_n^{bp} = homotopy spheres that bound parallelizable manifolds

Theorem (Kervaire–Milnor)

For $n \ge 5$, the subgroup Θ_n^{bp} is cyclic,

$$|\Theta_n^{bp}| = \begin{cases} 1, & \text{if } n \text{ is even,} \\ 1 & \text{or } 2, & \text{if } n = 4k + 1, \\ b_k, & \text{if } n = 4k - 1. \end{cases}$$

うして ふゆう ふほう ふほう うらつ

 $b_k = 2^{2k-2}(2^{2k-1}-1)$ the numerator of $\frac{4B_{2k}}{k}$, B_{2k} : Bernoulli number.

Theorem (Kervaire–Milnor)

(continued) Suppose $n \ge 5$.

1. For $n \neq 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

 π_n : n-th stable homotopy groups of spheres, π_n/J : cokernel of the J-homomorphism. Theorem (Kervaire–Milnor)

(continued) Suppose $n \ge 5$.

1. For $n \neq 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0.$$

 π_n : n-th stable homotopy groups of spheres, π_n/J : cokernel of the J-homomorphism.

2. For $n \equiv 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \xrightarrow{\Phi_n} \mathbb{Z}/2 \to \Theta_{n-1}^{bp} \to 0.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

 Φ_n : the Kervaire invariant.

Theorem (Kervaire–Milnor)

(continued) Suppose $n \ge 5$.

1. For $n \neq 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0.$$

 π_n : n-th stable homotopy groups of spheres, π_n/J : cokernel of the J-homomorphism.

2. For $n \equiv 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \xrightarrow{\Phi_n} \mathbb{Z}/2 \to \Theta_{n-1}^{bp} \to 0.$$

うして ふゆう ふほう ふほう うらつ

 Φ_n : the Kervaire invariant.

• The Kervaire Invariant Problem: For which n, $\Phi_n \neq 0$?

The Kervaire invariant $\boldsymbol{\Phi}$

• *M*: framed manifold, dim = 4k + 2.

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

- *M*: framed manifold, dim = 4k + 2.
- Φ(M): the Arf invariant of the quadratic refinement of the intersection pairing with ℤ/2 coefficients.

- *M*: framed manifold, dim = 4k + 2.
- ► Φ(M): the Arf invariant of the quadratic refinement of the intersection pairing with Z/2 coefficients.

$$\lambda: H^{2k+1}(M)\otimes H^{2k+1}(M) \longrightarrow H^{4k+2}(M) = \mathbb{Z}/2$$

• *M*: framed manifold, dim = 4k + 2.

 Φ(M): the Arf invariant of the quadratic refinement of the intersection pairing with Z/2 coefficients.

$$\lambda: H^{2k+1}(M) \otimes H^{2k+1}(M) \longrightarrow H^{4k+2}(M) = \mathbb{Z}/2$$

$$\mu: H^{2k+1}(M) \longrightarrow \mathbb{Z}/2$$
$$\mu(x) + \mu(y) + \mu(x+y) = \lambda(x,y)$$

• *M*: framed manifold, dim = 4k + 2.

 Φ(M): the Arf invariant of the quadratic refinement of the intersection pairing with Z/2 coefficients.

$$\lambda: H^{2k+1}(M) \otimes H^{2k+1}(M) \longrightarrow H^{4k+2}(M) = \mathbb{Z}/2$$

$$\mu: H^{2k+1}(M) \longrightarrow \mathbb{Z}/2$$
$$\mu(x) + \mu(y) + \mu(x+y) = \lambda(x, y)$$

 The Arf invariant classifies isomorphic classes of non-singular quadratic forms over Z/2.

Arf Invariant $(\mu) = \begin{cases} 1, & \text{if } \mu(x) = 1 \\ 0, & \text{otherwise.} \end{cases}$ for the majority of the elements,

►

• *M*: framed manifold, dim = 4k + 2.

► Φ(M): the Arf invariant of the quadratic refinement of the intersection pairing with Z/2 coefficients.

$$\lambda: H^{2k+1}(M) \otimes H^{2k+1}(M) \longrightarrow H^{4k+2}(M) = \mathbb{Z}/2$$

$$\mu : H^{2k+1}(M) \longrightarrow \mathbb{Z}/2$$
$$\mu(x) + \mu(y) + \mu(x+y) = \lambda(x,y)$$

 The Arf invariant classifies isomorphic classes of non-singular quadratic forms over Z/2.

 $\text{Arf Invariant}(\mu) = \begin{cases} 1, & \text{if } \mu(x) = 1 \\ 0, & \text{otherwise.} \end{cases} \text{ for the majority of the elements,} \end{cases}$

framed manifolds of dim $n \leftrightarrow \pi_n$ Kervaire invariant $\Phi: \pi_n/J \longrightarrow \mathbb{Z}/2$.

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

• $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.

・ロト (母) (日) (日) (日) (0) (0)

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with $\Phi(M) = 1$ in dim n \Leftrightarrow (1) $n = 2^{j+1} 2$,

・ロト (母) (日) (日) (日) (0) (0)

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with Φ(M) = 1 in dim n ⇔
 (1) n = 2^{j+1} 2,
 (2) h_j² survives in the Adams spectral sequence in π_{2^{j+1}-2}.

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with Φ(M) = 1 in dim n ⇔
 (1) n = 2^{j+1} 2,
 (2) h_j² survives in the Adams spectral sequence in π_{2^{j+1}-2}.

•
$$\Rightarrow \Phi(M) = 0$$
 for all M in dim $\neq 2^{j+1} - 2$.
Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with Φ(M) = 1 in dim n ⇔
 (1) n = 2^{j+1} 2,
 (2) h_j² survives in the Adams spectral sequence in π_{2^{j+1}-2}.

•
$$\Rightarrow \Phi(M) = 0$$
 for all M in dim $\neq 2^{j+1} - 2$.

• (Hill-Hopkins-Ravenel, 2009) $\Phi(M) = 1$ only in dim = 2, 6, 14, 30, 62 and possibly 126.

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with Φ(M) = 1 in dim n ⇔
 (1) n = 2^{j+1} 2,
 (2) h_j² survives in the Adams spectral sequence in π_{2j+1-2}.

•
$$\Rightarrow \Phi(M) = 0$$
 for all M in dim $\neq 2^{j+1} - 2$.

(Hill-Hopkins-Ravenel, 2009)

 $\Phi(M) = 1$ only in dim = 2, 6, 14, 30, 62 and possibly 126.

▶ n = 30: (Mahowald–Tangora 1967), manifold by (Jones 1978).

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with Φ(M) = 1 in dim n ⇔
 (1) n = 2^{j+1} 2,
 (2) h_i² survives in the Adams spectral sequence in π_{2^{j+1}-2}.

►
$$\Rightarrow \Phi(M) = 0$$
 for all *M* in dim $\neq 2^{j+1} - 2$.

(Hill-Hopkins-Ravenel, 2009)

 $\Phi(M) = 1$ only in dim = 2, 6, 14, 30, 62 and possibly 126.

- ▶ n = 30: (Mahowald–Tangora 1967), manifold by (Jones 1978).
- ▶ n = 62: (Barratt-Jones-Mahowald 1984). No known manifold!

Question

For which dim *n*, there exists *M* with $\Phi(M) = 1$?

- $n = 2, 6, 14: S^1 \times S^1, S^3 \times S^3, S^7 \times S^7.$
- (Kervaire, 1960) $n = 10, 18: \Phi(M) = 0$ for all M.
- (Browder, 1969) There exists M with Φ(M) = 1 in dim n ⇔
 (1) n = 2^{j+1} 2,
 (2) h_i² survives in the Adams spectral sequence in π_{2^{j+1}-2}.

►
$$\Rightarrow \Phi(M) = 0$$
 for all *M* in dim $\neq 2^{j+1} - 2$.

(Hill-Hopkins-Ravenel, 2009)

 $\Phi(M) = 1$ only in dim = 2, 6, 14, 30, 62 and possibly 126.

- ▶ n = 30: (Mahowald–Tangora 1967), manifold by (Jones 1978).
- ▶ n = 62: (Barratt-Jones-Mahowald 1984). No known manifold!

• (Lin–Wang–Xu 2024): There exists M with $\Phi(M) = 1$ in dim 126.

Question

For which n, does S^n have a unique smooth structure?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

For which n, does S^n have a unique smooth structure?

Necessary condition: $|\Theta_n^{bp}| = 1$.

Question

For which n, does S^n have a unique smooth structure?

Necessary condition: $|\Theta_n^{bp}| = 1$.

• n = 4k - 1, never unique since $|\Theta_n^{bp}|$ is large.

Question

For which n, does S^n have a unique smooth structure?

Necessary condition: $|\Theta_n^{bp}| = 1$.

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem:

うして ふゆう ふほう ふほう うらつ

Question

For which n, does S^n have a unique smooth structure?

Necessary condition: $|\Theta_n^{bp}| = 1$.

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem:

$$\begin{split} 0 \to \Theta_{n+1}^{bp} \to \Theta_{n+1} \to \pi_{n+1}/J \xrightarrow{\Phi_{n+1}} \mathbb{Z}/2 \to \Theta_n^{bp} \to 0. \\ \Theta_n^{bp} = 0 \quad \Leftrightarrow \quad \Phi_{n+1} \neq 0 \end{split}$$

うして ふゆう ふほう ふほう うらつ

Question

For which n, does S^n have a unique smooth structure?

Necessary condition: $|\Theta_n^{bp}| = 1$.

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem:

$$\begin{split} 0 \to \Theta_{n+1}^{bp} \to \Theta_{n+1} \to \pi_{n+1}/J \xrightarrow{\Phi_{n+1}} \mathbb{Z}/2 \to \Theta_n^{bp} \to 0. \\ \Theta_n^{bp} = 0 \quad \Leftrightarrow \quad \Phi_{n+1} \neq 0 \end{split}$$

 \Rightarrow Odd dimensional spheres that *could* have a unique smooth structure:

$$S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$$

• Candidates: $S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$.

• Candidates: $S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ *S*¹³, *S*²⁹: not unique, May 1960's.

- Candidates: $S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$.
- ► S¹³, S²⁹: not unique, May 1960's.
- S¹²⁵: not unique, Hurewicz image of *tmf* (the spectrum of topological modular forms).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Candidates: $S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$.
- ▶ S¹³, S²⁹: not unique, May 1960's.
- S¹²⁵: not unique, Hurewicz image of *tmf* (the spectrum of topological modular forms).

Theorem (Wang–Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

・ロト ・ 日 ・ モ ト ・ 田 ・ うへで

- Candidates: $S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$.
- ► S¹³, S²⁹: not unique, May 1960's.
- S¹²⁵: not unique, Hurewicz image of *tmf* (the spectrum of topological modular forms).

Theorem (Wang–Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

Based on work of Kervaire-Milnor, Browder, Hill-Hopkins-Ravenel,

Corollary

The only odd dimensional spheres with a unique smooth structure are S^1, S^3, S^5, S^{61} .

•
$$|\Theta_n^{bp}| = 1$$
 when *n* is even.

• $|\Theta_n^{bp}| = 1$ when *n* is even.

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $|\Theta_n^{bp}| = 1$ when *n* is even.

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

- ▶ S⁶, S¹²: Kervaire–Milnor
- ► S⁵⁶: Isaksen

• $|\Theta_n^{bp}| = 1$ when *n* is even.

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

- ► S⁶, S¹²: Kervaire–Milnor
- ▶ S⁵⁶: Isaksen
- No more:

• $|\Theta_n^{bp}| = 1$ when *n* is even.

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

- ▶ S⁶, S¹²: Kervaire–Milnor
- ▶ S⁵⁶: Isaksen
- No more:
 - ▶ > 50%: Behrens, Hill, Hopkins, Mahowald, Quigley

・ロト (母) (日) (日) (日) (0) (0)

• $|\Theta_n^{bp}| = 1$ when *n* is even.

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

- ▶ S⁶, S¹²: Kervaire–Milnor
- ► S⁵⁶: Isaksen
- No more:
 - ▶ > 50%: Behrens, Hill, Hopkins, Mahowald, Quigley
 - ▶ Towards 100%: ongoing progress with Behrens, et al.

Definition

 $\pi_{n+k}(S^k) = \{ \text{based continuous maps } S^{n+k} \rightarrow S^k \} / homotopy$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

 $\pi_{n+k}(S^k) = \{ \text{based continuous maps } S^{n+k} \rightarrow S^k \} / homotopy$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For
$$n < 0$$
, $\pi_{n+k}(S^k) = 0$.

Definition

 $\pi_{n+k}(S^k) = \{ \text{based continuous maps } S^{n+k} \rightarrow S^k \} / homotopy$

・ロト ・ 日 ・ モート ・ 田 ・ うへぐ

• For
$$n < 0$$
, $\pi_{n+k}(S^k) = 0$.

• For
$$n = 0$$
, $\pi_k S^k = \mathbb{Z}$

Definition

 $\pi_{n+k}(S^k) = \{ \text{based continuous maps } S^{n+k} \rightarrow S^k \} / homotopy$

• For
$$n < 0$$
, $\pi_{n+k}(S^k) = 0$.

For
$$n = 0$$
, $\pi_k S^k = \mathbb{Z}$

(Serre)

$$\pi_{n+k}(S^k) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q}, & \text{if } n = 0 \\ \mathbb{Q}, & \text{if } k \text{ is even and } n = k-1, \\ 0, & \text{else.} \end{cases}$$

・ロト ・ 日 ・ モート ・ 田 ・ うへぐ

Low dimensional computations

$\pi_{0+n}(S^n)$	2	×	×	×	œ	∞	×	∞	œ	∞	~	œ	œ	∞
$\pi_{1+n}(S^n)$	•	•	œ	2	2	2	2	2	2	2	2	2	2	2
$\pi_{2+n}(S^n)$	•	•	2	2	2	2	2	2	2	2	2	2	2	2
$\pi_{3+n}(S^n)$	•	•	2	12	∞.12	24	24	24	24	24	24	24	24	24
$\pi_{4+n}(S^n)$	•	•	12	2	2 ²	2					•		•	•
$\pi_{5+n}(S^n)$	•	•	2	2	2^{2}	2	œ							•
$\pi_{6+n}(S^n)$	•	•	2	3	24.3	2	2	2	2	2	2	2	2	2
$\frac{\pi_{6+n}(S^n)}{\pi_{7+n}(S^n)}$	•	•	2	3 15	24·3 15	2 30	2 60	2 120	2 ∞·120	2 240	2 240	2 240	2 240	2 240
$\pi_{6+n}(S^n)$ $\pi_{7+n}(S^n)$ $\pi_{8+n}(S^n)$			2 3 15	3 15 2	24·3 15 2	2 30 2	2 60 24·2	2 120 2 ³	2 $\infty \cdot 120$ 2^4	2 240 2 ³	2 240 2 ²	2 240 2 ²	2 240 2 ²	2 240 2 ²
$\pi_{6+n}(S^{n}) = \pi_{7+n}(S^{n}) = \pi_{8+n}(S^{n}) = \pi_{9+n}(S^{n})$			2 3 15 2	3 15 2 2 ²	$ \begin{array}{r} 24\cdot3 \\ 15 \\ 2 \\ 2^3 \end{array} $	$\begin{array}{c} 2\\ 30\\ 2\\ 2^3 \end{array}$	2 60 $24 \cdot 2$ 2^{3}	2 120 2^{3} 2^{4}	2 $\infty \cdot 120$ 2^{4} 2^{5}	2 240 2 ³ 2 ⁴	2 240 2^{2} $\infty \cdot 2^{3}$	2 240 2^{2} 2^{3}	2 240 2^{2} 2^{3}	2 240 2^{2} 2^{3}
$\begin{aligned} \pi_{6+n}(S^n) \\ \pi_{7+n}(S^n) \\ \pi_{8+n}(S^n) \\ \pi_{9+n}(S^n) \\ \pi_{10+n}(S^n) \end{aligned}$	· · ·	· · ·	2 3 15 2 2^2	3 15 2 2^2 12·2	24·3 15 2 2 ³ 120·12·2	$ \begin{array}{c} 2 \\ 30 \\ 2 \\ 2^3 \\ 72 \cdot 2 \end{array} $	$ \begin{array}{c} 2 \\ 60 \\ 24 \cdot 2 \\ 2^3 \\ 72 \cdot 2 \end{array} $	2 120 2 ³ 2 ⁴ 24·2	2 $\infty \cdot 120$ 2^{4} 2^{5} $24^{2} \cdot 2$	2 240 2 ³ 2 ⁴ 24·2	2 240 2^{2} $\infty \cdot 2^{3}$ $12 \cdot 2$	$ \begin{array}{c} 2 \\ 240 \\ 2^2 \\ 2^3 \\ 6.2 \\ \end{array} $	$ \begin{array}{c} 2\\ 240\\ 2^2\\ 2^3\\ 6 \end{array} $	$ \begin{array}{c} 2\\ 240\\ 2^2\\ 2^3\\ 6 \end{array} $

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem (Freudenthal)

When $k \ge n+2$, the groups $\pi_{n+k}(S^k)$ only depend on n, not k.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (Freudenthal)

When $k \ge n+2$, the groups $\pi_{n+k}(S^k)$ only depend on n, not k.

We call this group the *n*-th stable homotopy groups of spheres, or the *n*-th stem, denoted by π_n .

・ロト (母) (日) (日) (日) (0) (0)

Theorem (Freudenthal)

When $k \ge n+2$, the groups $\pi_{n+k}(S^k)$ only depend on n, not k.

We call this group the *n*-th stable homotopy groups of spheres, or the *n*-th stem, denoted by π_n .

(Serre) π_n are finite abelian groups for n > 0.
 ⇒ Compute one prime at a time.

Theorem (Freudenthal)

When $k \ge n+2$, the groups $\pi_{n+k}(S^k)$ only depend on n, not k.

We call this group the *n*-th stable homotopy groups of spheres, or the *n*-th stem, denoted by π_n .

- (Serre) π_n are finite abelian groups for n > 0.
 ⇒ Compute one prime at a time.
- $\pi_* = \bigoplus_n \pi_n$ has a richer structure!
 - π_* form a ring by composition.

$$\pi_I \otimes \pi_m \longrightarrow \pi_{I+m}$$

うして ふゆう ふほう ふほう うらつ

Theorem (Freudenthal)

When $k \ge n+2$, the groups $\pi_{n+k}(S^k)$ only depend on n, not k.

We call this group the *n*-th stable homotopy groups of spheres, or the *n*-th stem, denoted by π_n .

- (Serre) π_n are finite abelian groups for n > 0.
 ⇒ Compute one prime at a time.
- $\pi_* = \bigoplus_n \pi_n$ has a richer structure!
 - π_* form a ring by composition.

 $\pi_I \otimes \pi_m \longrightarrow \pi_{I+m}$

Higher products: (matric) Toda brackets

$$\pi_I \otimes \pi_m \otimes \pi_n \longrightarrow \pi_{I+m+n-1}$$

Stable stems

$n \rightarrow$	0	1	2	3	4	5	6	7
π_{0+n}^{S}	8	2	2	<u>8·3</u>	•		2	<u>16·3·5</u>
π_{8+n}^{S}	<u>2</u> ·2	$2 \cdot 2^2$	2.3	<u>8·9·7</u>	•	3	22	<u>32</u> ·2· <u>3·5</u>
π_{16+n}^{S}	<u>2</u> ·2	$2 \cdot 2^3$	8.2	<u>8</u> ·2· <u>3·11</u>	8.3	22	2.2	<u>16</u> ·8·2· <u>9</u> ·3· <u>5·7·13</u>
π_{24+n}^{S}	<u>2</u> ·2	<u>2</u> ·2	$2^{2} \cdot 3$	<u>8·3</u>	2	3	2.3	$\underline{64} \cdot 2^2 \cdot \underline{3 \cdot 5 \cdot 17}$
π_{32+n}^{S}	$\underline{2}\cdot 2^3$	$2 \cdot 2^4$	$4 \cdot 2^3$	$\underline{8} \cdot 2^2 \cdot \underline{27} \cdot \underline{7} \cdot \underline{19}$	2.3	2 ² ·3	4.2.3.5	$\underline{16} \cdot 2^5 \cdot 3 \cdot \underline{3 \cdot 25 \cdot 11}$
π_{40+n}^{S}	$\underline{2} \cdot 4 \cdot 2^4 \cdot 3$	$2 \cdot 2^4$	$8 \cdot 2^2 \cdot 3$	<u>8·3·23</u>	8	16·2 ³ ·9·5	24.3	<u>32</u> ·4·2 ³ · <u>9</u> ·3· <u>5·7·13</u>
π_{48+n}^{S}	$\underline{2} \cdot 4 \cdot 2^3$	<u>2</u> ·2·3	2 ³ ·3	$\underline{8} \cdot 4 \cdot 2^2 \cdot \underline{3}$	$2^{3} \cdot 3$	24	4.2	<u>16</u> ·3· <u>3·5·29</u>

2-primary computations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Adams Spectral Sequence

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q ()

Computations via Spectral Sequences

• (Serre) Serre spectral sequence: up to 8-stem (unstable).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Computations via Spectral Sequences

- (Serre) Serre spectral sequence: up to 8-stem (unstable).
- (Toda) *EHP*-(spectral) sequence: up to 19-stem (unstable).
Computations via Spectral Sequences

- ▶ (Serre) Serre spectral sequence: up to 8-stem (unstable).
- (Toda) EHP-(spectral) sequence: up to 19-stem (unstable).
- (Adams) Adams spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{A_*}^{s,t}(\mathbb{F}_p, \mathbb{F}_p) \Longrightarrow \pi_{t-s}(S^0)_p^{\wedge}$$

$$A_* = H\mathbb{F}_{p*}H\mathbb{F}_p$$
: dual Steenrod algebra

Computations via Spectral Sequences

- ▶ (Serre) Serre spectral sequence: up to 8-stem (unstable).
- ▶ (Toda) *EHP*-(spectral) sequence: up to 19-stem (unstable).
- (Adams) Adams spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{A_*}^{s,t}(\mathbb{F}_{\rho}, \mathbb{F}_{\rho}) \Longrightarrow \pi_{t-s}(S^0)_{\rho}^{\wedge}$$

 $A_* = H\mathbb{F}_{p*}H\mathbb{F}_p$: dual Steenrod algebra

(Novikov) Adams–Novikov spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{\mathsf{MU}_*\mathsf{MU}}^{s,t}(\mathsf{MU}_*,\mathsf{MU}_*)_{\rho}^{\wedge} \Longrightarrow \pi_{t-s}(S^0)_{\rho}^{\wedge}$$

うして ふゆう ふほう ふほう うらつ

MU: complex cobordism spectrum

The Mahowald Uncertainty Principles

The Mahowald Uncertainty Principles

The First Mahowald Uncertainty Principle:

Any spectral sequence converging to the homotopy groups of spheres with an E_2 -page that can be named using homological algebra will be infinitely far from the actual answer.

The Mahowald Uncertainty Principles

The First Mahowald Uncertainty Principle:

Any spectral sequence converging to the homotopy groups of spheres with an E_2 -page that can be named using homological algebra will be infinitely far from the actual answer.

The Second Mahowald Uncertainty Principle:

Any method that computes nontrivial differentials in such a spectral sequence will leave infinitely many differentials undecided.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Φ is induced by the Thom reduction $MU \to H\mathbb{F}_p$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Φ is induced by the Thom reduction $MU \to H\mathbb{F}_p$
- Jump of filtrations!

Miller's square

Miller's square

Theorem (Miller)

Adams d_2 differentials $\leftrightarrow \rightarrow$ algebraic Novikov d_2 differentials

◆□▶
◆□▶
●□▶
●□▶
●□▶
●□▶
●□▶
●□▶

 p = 3 Nakamura, Tangora, Ravenel: around 108-stem

◆□ > < 個 > < E > < E > E の < @</p>

 p = 3 Nakamura, Tangora, Ravenel: around 108-stem

(ロ)、

 p = 5 Ravenel: around 1000-stem

 p = 3 Nakamura, Tangora, Ravenel: around 108-stem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► *p* = 5 Ravenel: around 1000-stem
- About dimension $p^3(2p-2)$

• (May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Toda's computation + Leibniz rule

• (May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}^{*,*,*}_{E^0A_*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}^{*,*}_{A_*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Toda's computation + Leibniz rule

• (Barratt–Mahowald–Tangora) up to 45-stem.

• (May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}^{*,*,*}_{E^0A_*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}^{*,*}_{A_*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

Toda's computation + Leibniz rule

- (Barratt–Mahowald–Tangora) up to 45-stem.
 - Massey products
 - Toda brackets

• (May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

Toda's computation + Leibniz rule

- (Barratt–Mahowald–Tangora) up to 45-stem.
 - Massey products
 - Toda brackets
 - ▶ finite CW complexes: differentials \longleftrightarrow extension problems

(May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

Toda's computation + Leibniz rule

- (Barratt–Mahowald–Tangora) up to 45-stem.
 - Massey products
 - Toda brackets
 - ▶ finite CW complexes: differentials \longleftrightarrow extension problems

• (Bruner) power operations in the Adams spectral sequence

 (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

 (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ (Wang-Xu 2017)
 ℝP[∞]-method: 60 and 61-stem

- (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- Wang-Xu 2017)
 ℝP[∞]-method: 60 and 61-stem
- ► (2017 2022)
 - (Gheorghe–Wang–Xu) motivic cofiber of *τ* method

- (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- ▶ (Wang-Xu 2017)
 ℝP[∞]-method: 60 and 61-stem
- ► (2017 2022)
 - ▶ (Gheorghe–Wang–Xu) motivic cofiber of \(\tau\) method
 - (Isaksen-Wang-Xu) up to the 90-stem with few exceptions,

- (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- ▶ (Wang-Xu 2017)
 ℝP[∞]-method: 60 and 61-stem
- ► (2017 2022)
 - ▶ (Gheorghe–Wang–Xu) motivic cofiber of \(\tau\) method
 - (Isaksen–Wang–Xu) up to the 90-stem with few exceptions,
- (2023 now)
 - ► (Lin-Wang-Xu)

ongoing progress towards the last Kervaire invariant problem in dimension 126 and beyond

Classical Adams Spectral Sequence up to 90-stem

Image: A matrix a

SH: stable homotopy category

- SH: stable homotopy category
- SH(k): motivic stable homotopy category over k

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- SH: stable homotopy category
- ▶ SH(k): motivic stable homotopy category over k

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• in SH: single graded spheres S^n

- SH: stable homotopy category
- SH(k): motivic stable homotopy category over k

- ▶ in SH: single graded spheres Sⁿ
- ▶ in SH(*k*): Two types of spheres:
 - $S^{1,0}$: simplicial sphere S^1

•
$$S^{1,1}$$
: $\mathbb{A}^1 - 0 = \mathbb{G}_m$

•
$$S^{2,1}$$
: \mathbb{P}^1

- SH: stable homotopy category
- SH(k): motivic stable homotopy category over k

- ▶ in SH: single graded spheres Sⁿ
- ▶ in SH(*k*): Two types of spheres:
 - $S^{1,0}$: simplicial sphere S^1
 - $S^{1,1}$: $\mathbb{A}^1 \mathbb{O} = \mathbb{G}_m$
 - $S^{2,1}$: \mathbb{P}^1
- invert both types of spheres

- SH: stable homotopy category
- SH(k): motivic stable homotopy category over k
- ▶ in SH: single graded spheres Sⁿ
- ▶ in SH(k): Two types of spheres:
 - $S^{1,0}$: simplicial sphere S^1
 - $S^{1,1}$: $\mathbb{A}^1 \mathbb{O} = \mathbb{G}_m$
 - $S^{2,1}$: \mathbb{P}^1
- invert both types of spheres
- bigraded motivic homotopy groups, motivic cohomology groups

(ロ) (型) (E) (E) (E) (O)

- SH: stable homotopy category
- SH(k): motivic stable homotopy category over k
- ▶ in SH: single graded spheres Sⁿ
- ▶ in SH(k): Two types of spheres:
 - $S^{1,0}$: simplicial sphere S^1
 - $S^{1,1}$: $\mathbb{A}^1 \mathbb{O} = \mathbb{G}_m$
 - $S^{2,1}$: \mathbb{P}^1
- invert both types of spheres
- bigraded motivic homotopy groups, motivic cohomology groups

Motivic analogue of classical computational tools exist!

Motivic Stable Homotopy Groups of Spheres

• (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char $k \neq 2$ $\pi_{n+1,n}S^{0,0}$ and $\pi_{n+2,n}S^{0,0}$ in terms of motivic cohomology, hermitian and Milnor K-groups of k

うして ふゆう ふほう ふほう うらう

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char k ≠ 2 π_{n+1,n}S^{0,0} and π_{n+2,n}S^{0,0} in terms of motivic cohomology, hermitian and Milnor K-groups of k

ション ふゆ く 山 マ ふ し マ うくの

• (Isaksen–Wang–Xu): $k = \mathbb{C}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s \leq 90$

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char k ≠ 2 π_{n+1,n}S^{0,0} and π_{n+2,n}S^{0,0} in terms of motivic cohomology, hermitian and Milnor K-groups of k

うして ふゆう ふほう ふほう うらう

- (Isaksen–Wang–Xu): $k = \mathbb{C}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s \leq 90$
- (Belmont–Isaksen): $k = \mathbb{R}, \pi_{s,w}\widehat{S^{0,0}}$ for $s w \leq 11$

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char k ≠ 2 π_{n+1,n}S^{0,0} and π_{n+2,n}S^{0,0} in terms of motivic cohomology, hermitian and Milnor K-groups of k
- (Isaksen–Wang–Xu): $k = \mathbb{C}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s \leq 90$
- (Belmont–Isaksen): $k = \mathbb{R}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s w \leq 11$
- (Wilson, Wilson–Østvær): $k = \text{finite fields}, \pi_{s,0}\widehat{S^{0,0}}$ for $s \leq 18$

• Betti realization: $SH(\mathbb{C}) \longrightarrow SH$

◆□ > < 個 > < E > < E > E の < @</p>

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{p}\cong\mathbb{F}_{p}[\tau], \ |\tau|=(0,-1)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{p}\cong\mathbb{F}_{p}[\tau], \ |\tau|=(0,-1)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

•
$$\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$$
 realizes to 1

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{p}\cong\mathbb{F}_{p}[\tau], \ |\tau|=(0,-1)$

- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{p}\cong\mathbb{F}_{p}[\tau], \ |\tau|=(0,-1)$

- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

•
$$\pi_{*,*}(\widehat{S^{0,0}})[\tau^{-1}] \cong \pi_*(\widehat{S^0})[\tau^{\pm}]$$

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho}\cong\mathbb{F}_{\rho}[\tau], \ |\tau|=(0,-1)$
- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

•
$$\pi_{*,*}(\widehat{S^{0,0}})[\tau^{-1}] \cong \pi_*(\widehat{S^0})[\tau^{\pm}]$$

- $\widehat{S^{0,0}}/\tau$: the cofiber of τ .
- (Isaksen): motAdamsNovikovSS for $\widehat{S^{0,0}}/\tau$ collapses

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho}\cong\mathbb{F}_{\rho}[\tau], \ |\tau|=(0,-1)$
- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

•
$$\pi_{*,*}(\widehat{S^{0,0}})[\tau^{-1}] \cong \pi_*(\widehat{S^0})[\tau^{\pm}]$$

- $\widehat{S^{0,0}}/\tau$: the cofiber of τ .
- (Isaksen): motAdamsNovikovSS for $\widehat{S^{0,0}}/\tau$ collapses

•
$$\pi_{*,*}\widehat{S^{0,0}}/\tau \cong \operatorname{Ext}_{\operatorname{MU}_*\operatorname{MU}}^{*,*}(\operatorname{MU}_*,\operatorname{MU}_*)_{\rho}^{\wedge}$$

$\mathrm{Ext}^{\mathfrak{s},\mathrm{2w}}_{\mathsf{MU}_{\bigstar}\mathsf{MU}}(\mathsf{MU}_{\ast},\mathsf{MU}_{\ast})_{\rho}^{\wedge} \stackrel{\cong}{\longrightarrow} \pi_{2w-\mathfrak{s},w}(\widehat{S^{0,0}}/\tau)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Isaksen's computation up to 60-stem

うして ふゆう ふほう ふほう うらつ

Wang's computer program

Isaksen's computation up to 60-stem

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Wang's computer program

Isaksen's computation up to 60-stem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The same data!

Theorem (Gheorghe–Wang–Xu)

The above two spectral sequences are isomorphic.

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

$$\widehat{S^{0,0}}/\tau$$
-Mod_{cell} \simeq D(MU_{*}MU-Comod_p^)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

$$\widehat{\mathcal{S}^{0,0}}/ au$$
-Mod_{cell} \simeq D(MU $_{*}$ MU-Comod $_{\rho}^{\wedge}$)

・ロト ・ 日 ・ モート ・ 田 ・ うへで

• $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

```
\widehat{S^{0,0}}/\tau-Mod<sub>cell</sub> \simeq D(MU<sub>*</sub>MU-Comod<sub>p</sub>^)
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

 $\widehat{S^{0,0}}/\tau$ -Mod_{cell} \simeq D(MU_{*}MU-Comod_p^)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p
- Quillen, Morava: MU_*MU -Comod \simeq QCoh(\mathcal{M}_{FG})

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

```
\widehat{S^{0,0}}/\tau-Mod<sub>cell</sub> \simeq D(MU<sub>*</sub>MU-Comod<sub>p</sub>^)
```

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p
- Quillen, Morava: MU_*MU -Comod \simeq QCoh(\mathcal{M}_{FG})
- alternative proofs: Krause, and Pstragowski

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

 $\widehat{S^{0,0}}/\tau$ -Mod_{cell} \simeq D(MU_{*}MU-Comod_p^)

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p
- Quillen, Morava: MU_*MU -Comod \simeq QCoh(\mathcal{M}_{FG})
- alternative proofs: Krause, and Pstragowski
- τ : parameter of a motivic deformation of stable ∞ -categories:

$$\tau^{-1}\widehat{S^{0,0}} \longleftrightarrow \widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau$$

Theorem (Miller)

Adams d_2 differentials $\leftrightarrow \rightarrow$ algebraic Novikov d_2 differentials

- * ロト * 昼 * * ミト * ヨト * ヨ * のへで

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э

Algebraic Novikov d_r differentials (for any r) for MU_{*}

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Algebraic Novikov d_r differentials (for any r) for MU_{*}

 \longleftrightarrow Motivic Adams d_r differentials for $\widehat{S^{0,0}}/\tau$

Algebraic Novikov d_r differentials (for any r) for MU_{*}

- \longleftrightarrow Motivic Adams d_r differentials for $\widehat{S^{0,0}}/ au$
- \longrightarrow Motivic Adams $d_{r'}$ differentials for $\widehat{S^{0,0}}$ (for $r' \leq r$)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

Algebraic Novikov d_r differentials (for any r) for MU_{*}

- \longleftrightarrow Motivic Adams d_r differentials for $\widehat{S^{0,0}}/ au$
- \longrightarrow Motivic Adams $d_{r'}$ differentials for $\widehat{S^{0,0}}$ (for $r' \leq r$)
- \longrightarrow Classical Adams $d_{r'}$ differentials for $\widehat{S^0}$ (for $r' \leq r$)

- ▶ Compute Ext over ℂ.
- Compute algNovikovSS(MU*), including all differentials.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Compute Ext over \mathbb{C} .
- Compute algNovikovSS(MU_{*}), including all differentials.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

• algNovikovSS(MU_{*}) \cong motAdamsSS($\widehat{S^{0,0}}/\tau$)

▶ Compute Ext over ℂ.

- Compute algNovikovSS(MU*), including all differentials.
- algNovikovSS(MU_{*}) \cong motAdamsSS($\widehat{S^{0,0}}/\tau$)

$$\widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau \longrightarrow \Sigma^{1,-1}\widehat{S^{0,0}}$$

うして ふゆう ふほう ふほう うらつ

pull back and pushforward Adams differentials from $\widehat{S^{0,0}}/ au$.

Apply ad hoc arguments such as shuffling Toda brackets.

- ▶ Compute Ext over ℂ.
- Compute algNovikovSS(MU*), including all differentials.
- algNovikovSS(MU_{*}) \cong motAdamsSS($\widehat{S^{0,0}}/\tau$)

$$\widehat{S^{0,0}}\longrightarrow \widehat{S^{0,0}}/\tau\longrightarrow \Sigma^{1,-1}\widehat{S^{0,0}}$$

うして ふゆう ふほう ふほう うらつ

pull back and pushforward Adams differentials from $\widehat{S^{0,0}}/\tau$.

- Apply ad hoc arguments such as shuffling Toda brackets.
- lnvert τ .

Some Adams differentials

We can reprove many hard Adams differentials using this method.

Some Adams differentials

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

(ロ)、

Some Adams differentials

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

・ロト (母) (日) (日) (日) (0) (0)

 Mahowald–Tangora: *d*₄(*h*₃*h*₅) = *h*₀*x* in the 38-stem. Ad-hoc method using a certain finite CW spectrum.
Some Adams differentials

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

• Mahowald–Tangora: $d_4(h_3h_5) = h_0x$ in the 38-stem. Ad-hoc method using a certain finite CW spectrum.

Bruner:

 $d_3(e_1) = h_1 t$ in the 38-stem.

Power operations in the Adams spectral sequence.

Some Adams differentials

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

- Mahowald–Tangora: *d*₄(*h*₃*h*₅) = *h*₀*x* in the 38-stem. Ad-hoc method using a certain finite CW spectrum.
- Bruner:

 $d_3(e_1) = h_1 t$ in the 38-stem.

Power operations in the Adams spectral sequence.

```
Wang−Xu:
d<sub>3</sub>(D<sub>3</sub>) = B<sub>3</sub> in the 61-stem.
RP<sup>∞</sup>-technique.
```

Some Adams differentials

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

- Mahowald–Tangora: *d*₄(*h*₃*h*₅) = *h*₀*x* in the 38-stem. Ad-hoc method using a certain finite CW spectrum.
- Bruner:

 $d_3(e_1) = h_1 t$ in the 38-stem.

Power operations in the Adams spectral sequence.

```
Wang−Xu:
d<sub>3</sub>(D<sub>3</sub>) = B<sub>3</sub> in the 61-stem.
RP<sup>∞</sup>-technique.
```

Re-compute early range very effectively

Classical Adams spectral sequence

(ロト (四) (ヨト (ヨト (三) のへで

Classical Adams spectral sequence

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ の Q ()

▲ロト ▲圖ト ▲画ト ▲画ト 三画 - のへで

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のへで

Motivic E_∞ -page of $\widehat{\mathcal{S}^{0,0}}/ au$

So the motivic $\widehat{S^{0,0}}/\tau$ -method computes 5 out of the 6 harder differentials in the range up to the 45-stem!

So the motivic $\widehat{S^{0,0}}/\tau$ -method computes 5 out of the 6 harder differentials in the range up to the 45-stem!

(ロ)、

This leaves one left.

So the motivic $\widehat{S^{0,0}}/\tau$ -method computes 5 out of the 6 harder differentials in the range up to the 45-stem!

This leaves one left.

So it does not violate the Second Mahowald Uncertainty Principle!

・ロト ・四ト ・ヨト ・ヨー うへぐ

Future Directions

• Computing $\pi_{*,*}S^{0,0}$ in SH(k) over general base fields.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ∽へぐ

Future Directions

- Computing $\pi_{*,*}S^{0,0}$ in SH(k) over general base fields.
- Large range phenomena in the Adams spectral sequence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• in SH(\mathbb{C}), τ : parameter of a deformation:

$$\tau^{-1}\widehat{S^{0,0}} \longleftrightarrow \widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

• in SH(\mathbb{C}), τ : parameter of a deformation:

$$\tau^{-1}\widehat{S^{0,0}} \longleftrightarrow \widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• in SH(k), τ does not exist in general.

• in SH(\mathbb{C}), τ : parameter of a deformation:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 in SH(k), \(\tau\) does not exist in general.
 Instead, Bachmann-Kong-Wang-Xu introduce a t-structure, (the Chow t-structure)

• in SH(\mathbb{C}), τ : parameter of a deformation:

ション ふゆ アメリア メリア しょうめん

- in SH(k), \(\tau\) does not exist in general.
 Instead, Bachmann-Kong-Wang-Xu introduce a t-structure, (the Chow t-structure)
- $(-)_{c=i}$: truncation $SH(k) \longrightarrow \Sigma^{i}SH(k)^{\heartsuit}$

• in SH(\mathbb{C}), τ : parameter of a deformation:

ション ふゆ アメリア メリア しょうめん

- in SH(k), \(\tau\) does not exist in general.
 Instead, Bachmann-Kong-Wang-Xu introduce a t-structure, (the Chow t-structure)
- $(-)_{c=i}$: truncation $SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

• in SH(\mathbb{C}), τ : parameter of a deformation:

$$\tau^{-1}\widehat{S^{0,0}} \longleftrightarrow \widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau$$

うして ふゆう ふほう ふほう うらつ

- in SH(k), \(\tau\) does not exist in general.
 Instead, Bachmann-Kong-Wang-Xu introduce a t-structure, (the Chow t-structure)
- $(-)_{c=i}$: truncation $SH(k) \longrightarrow \Sigma^{i}SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

Theorem (Bachmann–Kong–Wang–Xu) Let $E \in SH(k)$. $\pi_{*,*}E_{c=i} \cong Ext_{MU_*MU}^{*,*}(MU_*, (MGL_{*,*}E)_{c=i})$

Theorem (Bachmann–Kong–Wang–Xu)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$SH(k)_{cell}^{\heartsuit} \simeq MU_*MU$$
-Comod,

Theorem (Bachmann-Kong-Wang-Xu)

- $SH(k)_{cell}^{\heartsuit} \simeq MU_*MU$ -Comod,
- $S_{c=0}^{0,0}$ -Mod_{cell} $\simeq D(MU_*MU$ -Comod).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Theorem (Bachmann-Kong-Wang-Xu)

- $SH(k)_{cell}^{\heartsuit} \simeq MU_*MU$ -Comod,
- $S_{c=0}^{0,0}$ -Mod_{cell} $\simeq D(MU_*MU$ -Comod).
- These equivalences are independent of the base field k!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Theorem (Bachmann–Kong–Wang–Xu)

- $SH(k)_{cell}^{\heartsuit} \simeq MU_*MU$ -Comod,
- $S_{c=0}^{0,0}$ -Mod_{cell} $\simeq D(MU_*MU$ -Comod).
- These equivalences are independent of the base field k!

- au does not exist in general,
- $S^{0,0}_{c=0}$ in $\mathrm{SH}(k)^{\heartsuit}$ plays the role of $\widehat{S^{0,0}}/ au$ over $\mathbb C$

Theorem (Bachmann–Kong–Wang–Xu)

- $SH(k)_{cell}^{\heartsuit} \simeq MU_{*}MU$ -Comod,
- $S_{c=0}^{0,0}$ -Mod_{cell} $\simeq D(MU_*MU$ -Comod).
- These equivalences are independent of the base field k!

- au does not exist in general,
- $S^{0,0}_{c=0}$ in $\mathrm{SH}(k)^{\heartsuit}$ plays the role of $\widehat{S^{0,0}}/ au$ over $\mathbb C$
- ▶ over \mathbb{C} , $\pi_{*,*}\widehat{S^{0,0}}/\tau \cong \operatorname{Ext}_{\operatorname{MU}_*\operatorname{MU}}^{*,*}(\operatorname{MU}_*,\operatorname{MU}_*)_{\rho}^{\wedge}$

Theorem (Bachmann-Kong-Wang-Xu)

•
$$SH(k)_{cell}^{\heartsuit} \simeq MU_{*}MU$$
-Comod,

•
$$S_{c=0}^{0,0}$$
-Mod_{cell} $\simeq D(MU_*MU$ -Comod).

These equivalences are independent of the base field k!

うして ふゆう ふほう ふほう うらつ

- au does not exist in general,
- $S^{0,0}_{c=0}$ in $\mathrm{SH}(k)^{\heartsuit}$ plays the role of $\widehat{S^{0,0}}/ au$ over $\mathbb C$
- over \mathbb{C} , $\pi_{*,*}\widehat{S^{0,0}}/\tau \cong \operatorname{Ext}_{\operatorname{MU}*\operatorname{MU}}^{*,*}(\operatorname{MU}_*,\operatorname{MU}_*)_{\rho}^{\wedge}$

• over k,
$$\pi_{*,*}S^{0,0}_{c=0} \cong \operatorname{Ext}^{*,*}_{\mathsf{MU}_*\mathsf{MU}}(\mathsf{MU}_*,\mathsf{MU}_*)$$

Postnikov–Whitehead Tower

Postnikov–Whitehead tower for $S^{0,0}$ w.r.t. the Chow *t*-structure:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Postnikov–Whitehead Tower

Postnikov–Whitehead tower for $S^{0,0}$ w.r.t. the Chow *t*-structure:

・ロト ・ 日 ・ モート ・ 田 ・ うへぐ

► MGL_{*,*}S^{0,0}_{c=n} is the Chow degree n part of MGL_{*,*}

Postnikov–Whitehead Tower

Postnikov–Whitehead tower for $S^{0,0}$ w.r.t. the Chow *t*-structure:

・ロト ・ 日 ・ モート ・ 田 ・ うへぐ

▶ MGL_{*,*}S^{0,0}_{c=n} is the Chow degree n part of MGL_{*,*}

•
$$\pi_{*,*}S^{0,0}_{c=n} = \operatorname{Ext}^{*,*}_{\mathsf{MU}_*\mathsf{MU}}(\mathsf{MU}_*, (\mathsf{MGL}_{*,*})_{c=n})$$

Computing $\pi_{*,*}S^{0,0}$ over k

Apply the motivic Adams spectral sequences:

$$\begin{array}{c} \bigvee \\ \mathsf{motASS}(S^{0,0}_{c \ge 2}) \Rightarrow \mathsf{motASS}(S^{0,0}_{c=2}) = \mathsf{algNSS}((\mathsf{MGL}_{*,*})_{c=2}) \\ \downarrow \\ \mathsf{motASS}(S^{0,0}_{c \ge 1}) \Rightarrow \mathsf{motASS}(S^{0,0}_{c=1}) = \mathsf{algNSS}((\mathsf{MGL}_{*,*})_{c=1}) \\ \downarrow \\ \mathsf{motASS}(S^{0,0}) = \mathsf{motASS}(S^{0,0}) \Rightarrow \mathsf{motASS}(S^{0,0}_{c=0}) = = \mathsf{algNSS}(\mathsf{MU}_{*}) \end{array}$$

In the Adams spectral sequence, Ext^{1,*}_A(𝔽₂,𝔽₂) is generated by the classes h_j.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

In the Adams spectral sequence, Ext^{1,*}_A(𝔽₂,𝔽₂) is generated by the classes h_j.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

•
$$h_j^4 = 0.$$

• In the Adams spectral sequence, $\operatorname{Ext}_{A}^{1,*}(\mathbb{F}_{2},\mathbb{F}_{2})$ is generated by the classes h_{j} .

・ロト (母) (日) (日) (日) (0) (0)

•
$$h_j^4 = 0.$$

• (Adams): h_j survives $\Leftrightarrow j \leq 3$.

- In the Adams spectral sequence, $\operatorname{Ext}_{A}^{1,*}(\mathbb{F}_{2},\mathbb{F}_{2})$ is generated by the classes h_{j} .
- $h_j^4 = 0.$
- (Adams): h_j survives $\Leftrightarrow j \leq 3$.
- The tangent bundle over S^n is trivial $\Leftrightarrow n = 1, 3, 7$.

・ロト (母) (日) (日) (日) (0) (0)

- In the Adams spectral sequence, Ext^{1,*}_A(F₂, F₂) is generated by the classes h_j.
- $h_j^4 = 0.$
- (Adams): h_j survives $\Leftrightarrow j \leq 3$.
- The tangent bundle over S^n is trivial $\Leftrightarrow n = 1, 3, 7$.
- (Hill–Hopkins–Ravenel): h_i^2 survives $\Leftrightarrow j \leq 5$ and possibly 6.

- In the Adams spectral sequence, Ext^{1,*}_A(F₂, F₂) is generated by the classes h_j.
- $h_j^4 = 0.$
- (Adams): h_j survives $\Leftrightarrow j \leq 3$.
- The tangent bundle over S^n is trivial $\Leftrightarrow n = 1, 3, 7$.
- (Hill–Hopkins–Ravenel): h_i^2 survives $\Leftrightarrow j \leq 5$ and possibly 6.

▶ (Lin–Wang–Xu): *h*²₆ survives.
Hopf, Kervaire, and ····

- In the Adams spectral sequence, Ext^{1,*}_A(F₂, F₂) is generated by the classes h_j.
- $h_j^4 = 0.$
- (Adams): h_j survives $\Leftrightarrow j \leq 3$.
- The tangent bundle over S^n is trivial $\Leftrightarrow n = 1, 3, 7$.
- (Hill–Hopkins–Ravenel): h_i^2 survives $\Leftrightarrow j \leq 5$ and possibly 6.
- ▶ (Lin–Wang–Xu): h₆² survives.
- There exists a framed *n*-dim manifold with Kervaire invariant one \Leftrightarrow n = 2, 6, 14, 30, 62, 126.

うして ふゆう ふほう ふほう うらつ

Hopf, Kervaire, and ····

- In the Adams spectral sequence, Ext^{1,*}_A(F₂, F₂) is generated by the classes h_j.
- $h_j^4 = 0.$
- (Adams): h_j survives $\Leftrightarrow j \leq 3$.
- The tangent bundle over S^n is trivial $\Leftrightarrow n = 1, 3, 7$.
- (Hill–Hopkins–Ravenel): h_i^2 survives $\Leftrightarrow j \leq 5$ and possibly 6.
- ▶ (Lin–Wang–Xu): h₆² survives.
- ► There exists a framed *n*-dim manifold with Kervaire invariant one ⇔ n = 2, 6, 14, 30, 62, 126.

• (Burklund–Xu): h_i^3 survives $\Leftrightarrow j \leq 4$.

Hopf, Kervaire, and ····

- In the Adams spectral sequence, Ext^{1,*}_A(F₂, F₂) is generated by the classes h_j.
- $h_j^4 = 0.$
- (Adams): h_j survives $\Leftrightarrow j \leq 3$.
- The tangent bundle over S^n is trivial $\Leftrightarrow n = 1, 3, 7$.
- (Hill-Hopkins-Ravenel): h_i^2 survives $\Leftrightarrow j \leq 5$ and possibly 6.
- ▶ (Lin–Wang–Xu): h₆² survives.
- There exists a framed *n*-dim manifold with Kervaire invariant one \Leftrightarrow n = 2, 6, 14, 30, 62, 126.
- (Burklund–Xu): h_i^3 survives $\Leftrightarrow j \leq 4$.
- Ongoing progress: interpretation in terms of framed manifolds.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

• in Ext,
$$Sq^0 : Ext_A^{s,t} \longrightarrow Ext_A^{s,2t}$$
,

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

• in Ext,
$$Sq^0 : Ext_A^{s,t} \longrightarrow Ext_A^{s,2t}$$

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

•
$$Sq^0$$
-family: x , Sq^0x , $Sq^0(Sq^0x)$, ...

• in Ext,
$$Sq^0 : \operatorname{Ext}_A^{s,t} \longrightarrow \operatorname{Ext}_A^{s,2t}$$

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$Sq^0$$
-family: x , Sq^0x , $Sq^0(Sq^0x)$, ...

New Doomsday Conjecture: For any nonzero Sq⁰-family, only finitely many classes survive.

• in Ext,
$$Sq^0 : Ext_A^{s,t} \longrightarrow Ext_A^{s,2t}$$
,

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$Sq^0$$
-family: x , Sq^0x , $Sq^0(Sq^0x)$, \cdots

- New Doomsday Conjecture: For any nonzero Sq⁰-family, only finitely many classes survive.
 - $Ext_A^{1,*} \Leftrightarrow$ Hopf invariant problem,

• in Ext,
$$Sq^0 : Ext_A^{s,t} \longrightarrow Ext_A^{s,2t}$$
,

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$Sq^0$$
-family: x , Sq^0x , $Sq^0(Sq^0x)$, \cdots

- ▶ New Doomsday Conjecture: For any nonzero Sq⁰-family, only finitely many classes survive.
 - Ext^{1,*}_A ⇔ Hopf invariant problem,
 Ext^{2,*}_A ⇔ Kervaire invariant problem,

• in Ext,
$$Sq^0 : Ext_A^{s,t} \longrightarrow Ext_A^{s,2t}$$
,

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

•
$$Sq^0$$
-family: x , Sq^0x , $Sq^0(Sq^0x)$, \cdots

- New Doomsday Conjecture: For any nonzero Sq^0 -family, only finitely many classes survive.

 - Ext^{1,*}_A ⇔ Hopf invariant problem,
 Ext^{2,*}_A ⇔ Kervaire invariant problem,
 Ext^{3,*}_A: other than h³_j, many cases remain

$$h_j^2 h_{j+k+1} + h_{j+1} h_{j+k}^2 = \langle h_j^2, h_0, h_{j+k}^2 \rangle.$$

• in Ext,
$$Sq^0 : Ext_A^{s,t} \longrightarrow Ext_A^{s,2t}$$
,

$$Sq^{0}h_{j} = h_{j+1}, \ Sq^{0}h_{j}^{2} = h_{j+1}^{2}, \ Sq^{0}h_{j}^{3} = h_{j+1}^{3}$$

•
$$Sq^0$$
-family: x , Sq^0x , $Sq^0(Sq^0x)$, \cdots

- New Doomsday Conjecture: For any nonzero Sq^0 -family, only finitely many classes survive.

 - Ext^{1,*}_A ⇔ Hopf invariant problem,
 Ext^{2,*}_A ⇔ Kervaire invariant problem,
 Ext^{3,*}_A: other than h³_i, many cases remain

$$h_j^2 h_{j+k+1} + h_{j+1} h_{j+k}^2 = \langle h_j^2, h_0, h_{j+k}^2 \rangle.$$

• Uniform Doomsday Conjecture: For any nonzero Sq^0 -family $\{a_i\}$, there exists a Sq^0 -family $\{b_i\}$, $r \ge 2$, $c \in Ext$, such that

$$d_r(a_j) = c \cdot b_j \neq 0$$
, for $j >> 0$.

Thank you!