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M: closed manifold, dim = 3, tgM = 1M = 0.
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Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopy equiv to S".
Is M homeomorphic to S"7?

Answer: Yes.
» n=4, Freedman 1982.

» n =5, Smale (smooth), Newman, Connell. 1960's.
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(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:
» n=3. Yes. Moise 1952.
» n=4. Open.
» n=56. Yes. Kervaire—Milnor.

» n=7. No. Milnor's exotic 7-sphere.

Questions

1. For which n, is there a unique smooth structure on 5”7

2. How many smooth structures are there on S"?
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» O, = smooth structures on S"

= h-cobordism classes of homotopy n-spheres
» ©bP = homotopy spheres that bound parallelizable manifolds
Theorem (Kervaire-Milnor)

For n =5, the subgroup ©% is cyclic,

1, if n iseven,
|©%| = {1 or 2, if n=4k+1,
by, if n=4k—1.

by = 22k=2(22k=1 _ 1). the numerator of 452,
By : Bernoulli number.
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¢!7
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> M: framed manifold, dim = 4k + 2.

» ®(M): the Arf invariant of the quadratic refinement of the
intersection pairing with Z/2 coefficients.

A (M) @ H*HH (M) — H*2(M) = /2

w: H*H (M) — z/2
n(x) + ply) + plx +y) = Alx, y)

» The Arf invariant classifies isomorphic classes of non-singular
quadratic forms over Z/2.

1, if p(x) =1 for the majority of the elements,

Arf Invariant(pu) = {0 otherwise

framed manifolds of dim n «— 7,

Kervaire invariant & : 7,/J — Z/2.
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Question
For which dim n, there exists M with $(M) = 17

» n=2,6, 14 S1 xS1, 53 x S3 S"x 5",
> (Kervaire, 1960) n = 10, 18: (M) = 0 for all M.
Browder, 1969) There exists M with ®(M) =1 in dim n <

1) n=2% 2

2) hf survives in the Adams spectral sequence in mpj+1_5.
» = ®(M) =0 for all M in dim # 2+1 -2,

» (Hill-Hopkins-Ravenel, 2009)
®(M) =1 only in dim = 2, 6, 14, 30, 62 and possibly 126.

> n = 30: (Mahowald—Tangora 1967), manifold by (Jones 1978).
> n = 62: (Barratt-Jones-Mahowald 1984). No known manifold!

» (Lin-Wang—Xu 2024): There exists M with ®(M) =1 in dim 126.

>
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Uniqueness of smooth structures

Question

For which n, does S” have a unique smooth structure?
Necessary condition: |©%P| = 1.
> n = 4k — 1, never unique since |©| is large.
» n=4k + 1, it depends on the Kervaire invariant problem:
0 0%, = 0,41 — w1/ 225 7/2 — 08 0,
=0 = o, #0

= Odd dimensional spheres that could have a unique smooth structure:

51 53 55 513 529 561 5125
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Odd Dimensions

» Candidates: S!, 3,55 S'3 629 61 G125

» S13,5%9: not unique, May 1960's.

» S125: not unique, Hurewicz image of tmf

(the spectrum of topological modular forms).

Theorem (Wang—Xu)
me1 = 0, and therefore S®! has a unique smooth structure.
Based on work of Kervaire—Milnor, Browder, Hill-Hopkins—Ravenel,
Corollary

The only odd dimensional spheres with a unique smooth structure are
51’537557561'
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Even Dimensions

> |©bP| =1 when n is even.

Conjecture

For dim at least 6, the only even dimensional spheres with a unique
smooth structure are S°, S12, 5%

» S8 S12: Kervaire-Milnor
» S§%6: |saksen

> No more:

> > 50%: Behrens, Hill, Hopkins, Mahowald, Quigley
> Towards 100%: ongoing progress with Behrens, et al.
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Homotopy groups of spheres

Definition

Tnik(S¥) = {based continuous maps S"** — Sk} /homotopy

» For n <0, m,x(S%) =0.
» Forn=0, mSk=127
> (Serre)
Q, if n=0

7r,,+k(5k) ®Q=<Q, if kisevenand n=k —1,
0, else.



Low dimensional computations

Tgn(S") | e | e I I I R B N B B
(5™ o | 2 2 2 2 2 2 2 2 2 2 2

T34n(S™) 2 | 2 2 2 2 2 2 2 2 2 2 2

T340(S™) 2 | 12| w12 24 | 24 | 24 24 24 | 24 | 24 24 24
Tgin(S™) 12| 2 22 2

T4 n(S™) 2 | 2 22 2 w

Tgn(S™ 2 | 3 243 2 2 2 2 2 2 2 2 2

7.40(S™) 3|15 15 30 | 60 | 120 | 120 | 240 | 240 | 240 | 240 | 240
g, (S™) 15 2 2 2 242 23 24 23 22 22 22 22
7.4,(S") 2 | 22 23 23 23 24 2% 24 | w23 | 23 23 23
T104n(S™) 22 122 | 1201122 | 722 | 722 | 242 | 2422 | 242 | 122 | 62 6 6

Ty 14n(S™ 122 [8422| 8425 |504-22| 5044 | 5042 | 5042 [ 5042 | 504 | 504 | =504 | 504
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The stable range

Theorem (Freudenthal)
When k > n + 2, the groups 7, x(S*) only depend on n, not k.

We call this group the n-th stable homotopy groups of spheres, or the
n-th stem, denoted by 7.

> (Serre) m, are finite abelian groups for n > 0.
= Compute one prime at a time.

> T, = @,m, has a richer structure!

> m, form a ring by composition.

T & Tm > T4+m

> Higher products: (matric) Toda brackets

T QRTm T, — T+m+n—1



Stable stems

n— 0 1 2 3 4 5 6 7

Moen || 2 | 2 83 2 16:3:5
Mg || 22 |[222] 23 897 3 22 32235
e | 22 || 223 82 82311 |83 22 22 | 16-82:9-357-13
ToaeS || 22 22 || 223 83 2 3 23 64-223.5:17
e | 223 || 224 423 || 822277-19 |[ 23 || 223 [4235| 1625332511
Tgoun’ || 24243 || 224 | 8223 8:3-23 8 [162395| 2*3 | 32423935713
Tygan® | 2423 1223 233 84223 (233 2* 42 1633:529
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The Adams Spectral Sequence
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Computations via Spectral Sequences

» (Serre) Serre spectral sequence: up to 8-stem (unstable).
» (Toda) EHP-(spectral) sequence: up to 19-stem (unstable).

» (Adams) Adams spectral sequence

E' = Exty, (Fp, Fp) = 1 s(S))

Ay = HF . HIF,: dual Steenrod algebra

» (Novikov) Adams—Novikov spectral sequence
E" = Extyy,mu(MUs, MUy) ) = me5(S%)

MU: complex cobordism spectrum
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The Mahowald Uncertainty Principles

» The First Mahowald Uncertainty Principle:
Any spectral sequence converging to the homotopy groups of
spheres with an Ep-page that can be named using homological
algebra will be infinitely far from the actual answer.

» The Second Mahowald Uncertainty Principle:
Any method that computes nontrivial differentials in such a spectral
sequence will leave infinitely many differentials undecided.
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Ext)y* (F,, Fp) Extyie, mu(MUsy, MU,

> ® is induced by the Thom reduction MU — HIF,

» Jump of filtrations!



ﬂ*(SO)g

d S

¥, % ¥, %
Ext’* (Fp, F) Extiys o (MU, MU,)S
kﬂe% y Novikov/SS

Extﬁf (Fp, 1*/1*F1)

Miller's square



7.(.*(50)/\

p

d P

Ext}y* (Fp, Fp) Extyi mu(MUy, MU,
kﬂe"bera\ss y Novikov/SS
collapses x . (
at odd primes! EXtP* (Fp, 1%/1%7%)

Miller's square



7.(.*(50)/\

p

Ad m/ X&

Ext}y* (F,, Fy) Extiye, vu(MUx, MU,))

/5N

Cartan-Eilenberg SS algebraic Novikov SS

collapses . A
at odd primes! EXtP* (Fm/ /1 )

Theorem (Miller)

Adams d, differentials «<—— algebraic Novikov d> differentials
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Stemwise computations

> p = 3

Nakamura, Tangora, Ravenel: around 108-stem
> p= 5

Ravenel: around 1000-stem

> About dimension p3(2p — 2)
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p = 2 computations

» (May) May spectral sequence: up to 28-stem.

Extgo” (Fp, Fp) = Exty " (Fp, Fp)

Toda's computation + Leibniz rule

» (Barratt—-Mahowald—Tangora) up to 45-stem.

> Massey products
> Toda brackets
> finite CW complexes: differentials «— extension problems

» (Bruner) power operations in the Adams spectral sequence
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Recent methods

> (Isaksen 2014)
motivic Adams spectral sequence over C:
up to 59-stem

» (Wang—Xu 2017)
RP®-method: 60 and 61-stem
> (2017 - 2022)
> (Gheorghe-Wang—Xu)
motivic cofiber of 7 method

> (Isaksen—-Wang—Xu)
up to the 90-stem with few exceptions,

» (2023 - now)
> (Lin-Wang—Xu)
ongoing progress towards the last Kervaire invariant problem in
dimension 126 and beyond



Classical Adams Spectral Sequence up to 90-stem

Isaksen-Wang-Xu

Wang-Xu

- Kochman-Mahowald,
Isaksen

* Barratt-Mahowald-Tangora

Toda " May

Serre
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Motivic homotopy theory

» SH: stable homotopy category

» SH(k): motivic stable homotopy category over k
» in SH: single graded spheres S”

» in SH(k): Two types of spheres:

» S10: simplicial sphere S!
» SLL AT —0 =G,
» G21. pl

> invert both types of spheres
> bigraded motivic homotopy groups, motivic cohomology groups

» Motivic analogue of classical computational tools exist!
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Motivic Stable Homotopy Groups of Spheres

» (Morel): For an arbitrary field k,
TpnS%0 = KMW (k): Milnor-Witt K-groups

» (Rondigs—Spitzweck—@stveer): For any field k, char k 5 2
7'rn+1,n50’0 and 7Tn-‘r27n5070
in terms of motivic cohomology, hermitian and Milnor K-groups of k

> (Isaksen-Wang—Xu): k = C, 7, WSOO for s <90
» (Belmont—Isaksen): k =R, 7r57W5°’0 fors—w <11

> (Wilson, Wilson—@stvzer): k = finite fields, 75,0590 for s < 18
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» Betti realization: SH(C) — SH

> (Voevodsky): 7y «HF, = F,[7], |7| = (0,—1)

> 7 Y1500 @, T realizes to 1

> (Dugger—Isaksen): T‘lﬁ—Modce” ~ SH,

> o (S00) 7] = e (50) 7]

> @/T: the cofiber of .

> (Isaksen): motAdamsNovikovSS for @/T collapses

> e SO0/T = Extiye 1y (MU, MU,))
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Exti u (MUs, MUy) ) — > . (500/7)
algebraic Hovikov ss motivic Adams SS
Ext;;>|2<v'/(]F‘,,7 [2=s/13=s+1) EXtaA’rE:{k_s+a7W(Fp7 Fpl7])
Wang's Isaksen's computation
computer program up to 60-stem

The same data!



motivic $%0/7-method

52w = 00
EXtMU*Mu(MU*’MU*)S > 7T2W—S,W(50’0/7')
algebraic Hovikov SS motivic Adams SS

s,2w a—s /Ja—s ~ a,2w—s+a,w
ExtP* (]Fm/ /1 +1)—>ExtA,*,.?; - (vaFp[T])

Theorem (Gheorghe-Wang—Xu)

The above two spectral sequences are isomorphic.
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Theorem (Gheorghe-Wang—Xu)

There is an equivalence of stable co-categories:

5/(R)/T'M(’dcen ~ D(MU4MU-Comod,)

50.0/7-Modg: cellular modules over S%0/7

D(MU,MU-Comod, ):
Hovey's derived category of comodules over MU*MU;

» Quillen, Morava: MU,MU-Comod ~ QCoh(Mgg)

v

v

> alternative proofs: Krause, and Pstragowski

» 7: parameter of a motivic deformation of stable co-categories:

+—150,0 50,0 50.0/7
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Ad m/ X&

Extf":(]Fp,]Fp) Ext;’(j*MU(MU*, MUy),

N

Cartan-Eilenberg SS algebraic Novikov SS
*,% * /1%+1
Exty* (F,, 1*/1%+0)

Theorem (Miller)

Adams d, differentials «<—— algebraic Novikov d, differentials
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EXt:: (va FP) ~ EthEt: (Fp [T]v F, [T]) - EXt:;n;t: (IFP [T] ) FP)

Adaﬂs SS motAdamsSS motAdamsSS

— —

LN () JP— S (TX.) PR

Algebraic Novikov d, differentials (for any r) for MU,
«— Motivic Adams d, differentials for 500 /7
— Motivic Adams d,- differentials for 500 (for r' <'r)

—— Classical Adams d, differentials for gB (for r' <r)



Strategy of Stem-wise Computations

> Compute Ext over C.

» Compute algNovikovSS(MU,), including all differentials.



Strategy of Stem-wise Computations

» Compute Ext over C.

» Compute algNovikovSS(MUy,), including all differentials.
> algNovikovSS(MU,) ~ motAdamsSS(5°9/r)



Strategy of Stem-wise Computations

» Compute Ext over C.

» Compute algNovikovSS(MUy,), including all differentials.
> algNovikovSS(MU,) ~ motAdamsSS(5°9/r)

o 500/ . ylo1500
pull back and pushforward Adams differentials from S/a)/r

» Apply ad hoc arguments such as shuffling Toda brackets.



Strategy of Stem-wise Computations

» Compute Ext over C.

» Compute algNovikovSS(MUy,), including all differentials.
> algNovikovSS(MU,) ~ motAdamsSS(5°9/r)

o 500/ . ylo1500
pull back and pushforward Adams differentials from S/a)/r

» Apply ad hoc arguments such as shuffling Toda brackets.

> |nvert 7.
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Some Adams differentials

We can reprove many hard Adams differentials using this method.
> May:

d3(h0h4) = hpdp in the 15-stem.
Compare with Toda's unstable computations. Compare with J.

» Mahowald—Tangora:

dy(h3hs) = hox in the 38-stem.

Ad-hoc method using a certain finite CW spectrum.
> Bruner:

ds(e1) = hit in the 38-stem.

Power operations in the Adams spectral sequence.
» Wang—Xu:

d3(D3) = B3 in the 61-stem.

RP®-technique.

Re-compute early range very effectively
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Harder Differentials
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So the motivic ~§)7)/7'—method computes 5 out of the 6 harder
differentials in the range up to the 45-stem!

This leaves one left.

So it does not violate the Second Mahowald Uncertainty Principle!
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Future Directions

> Computing 74 +S%C in SH(k) over general base fields.

> Large range phenomena in the Adams spectral sequence.
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Chow t-structure on SH(k)

» in SH(C), 7: parameter of a deformation:

+-150,0 500 500/7

» in SH(k), 7 does not exist in general.
Instead, Bachmann—Kong—Wang—Xu introduce a t-structure,
(the Chow t-structure)

> (=)c=i : truncation SH(k) — Z'SH(k)®

» MGL: algebraic cobordism spectrum

Theorem (Bachmann—-Kong—Wang—Xu)
Let E € SH(k).

e Eemi = Extie \yy(MUy, (MGL £ E)c—)
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The analog of §07>/T : ngo

Theorem (Bachmann—-Kong—Wang—Xu)

g SH( )cel
> 5%° Modq ~ D(MU,MU-Comod).

| =~ MU, MU-Comod,

» These equivalences are independent of the base field k!
» 7 does not exist in general,

> 50 0 in SH(K)? plays the role of @’/T over C

> over C, my, *50 O/r =~ Ext,\,IU mu(MUyx, MU, )

> over k T4 *SC 0= Extaj MU(MU*7MU )
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Postnikov—Whitehead Tower

Postnikov—Whitehead tower for S%0 w.r.t. the Chow t-structure:

0, 0,0
Sctr —> 5

0,0

0,0
500, —— 520,

50,0 50,0 52;00

> MGL, 4 S22, is the Chow degree n part of MGL, .

c=n

> 7T*7*5607:On = EXt;\k/ITJk*MU(MU*v (MGL*,*)c:n)



Computing 7. .S%0 over k

Apply the motivic Adams spectral sequences:

motASS(S%,) > motASS(S%’,) = algNSS((MGLy, 4 )c—s)

motASS(S20,) ~ motASS(SX°,) = algNSS((MGLy )c—1)

motASS(5%%) = motASS(5%°) > motASS(S2%) =—— algNSS(MUy)
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» There exists a framed n-dim manifold with Kervaire invariant one
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> In the Adams spectral sequence,
Exty* (Fo, ) is generated by the classes h;.

> hj‘-‘ = 0.

> (Adams): h; survives < j < 3.

» The tangent bundle over S" is trivial & n=1,3,7.

> (Hill-Hopkins—Ravenel): h? survives < j <5 and possibly 6.
> (Lin—Wang—Xu): hZ survives.

» There exists a framed n-dim manifold with Kervaire invariant one
< n=2,6, 14, 30, 62,126.

» (Burklund—Xu): hf survives < j < 4.

» Ongoing progress: interpretation in terms of framed manifolds.
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in Ext, Sq° : Ext‘;’t — Ext‘;’2t,

v

Sq°hj = hjr1, Sq°H; = W7y, Sq°h} = k2.,

v

Sq°-family: x, Sq°x, Sq°(Sq°x), ---

» New Doomsday Conjecture: For any nonzero Sq°-family, only
finitely many classes survive.
» Exty* < Hopf invariant problem,
> Exti”’<

> Ext3A’*: other than hj‘?’, many cases remain

< Kervaire invariant problem,

W hj kg1 + hpahi = (2, ho, h7e).

v

Uniform Doomsday Conjecture: For any nonzero Sq°-family {a;},
there exists a Sq°-family {bj}, r =2, ceExt, such that

d.(aj) = c-bj #0, for j >>0.



Thank you!



